Intercircuit control via rhythmic regulation of projection neuron activity.
نویسندگان
چکیده
Synaptic feedback from rhythmically active neuronal circuits commonly causes their descending inputs to exhibit the rhythmic activity pattern generated by that circuit. In most cases, however, the function of this rhythmic feedback is unknown. In fact, generally these inputs can still activate the target circuit when driven in a tonic activity pattern. We are using the crab stomatogastric nervous system (STNS) to test the hypothesis that the neuronal circuit-mediated rhythmic activity pattern in projection neurons contributes to intercircuit regulation. The crab STNS contains an identified projection neuron, modulatory commissural neuron 1 (MCN1), whose tonic stimulation activates and modulates the gastric mill (chewing) and pyloric (filtering of chewed food) motor circuits in the stomatogastric ganglion (STG). During tonic stimulation of MCN1, the pyloric circuit regulates both gastric mill cycle frequency and gastropyloric coordination via a direct synapse onto a gastric mill neuron in the STG. However, when MCN1 is spontaneously active, it has a pyloric-timed activity pattern attributable to synaptic input from the pyloric circuit. This pyloric-timed activity in MCN1 provides the pyloric circuit with a second pathway for regulating the gastric mill rhythm. At these times, the direct STG synapse from the pyloric circuit to the gastric mill circuit is not necessary for pyloric regulation of the gastric mill rhythm. However, in the intact system, these two pathways play complementary roles in this intercircuit regulation. Thus, one role for rhythmicity in modulatory projection neurons is to enable them to mediate the interactions between distinct but related neuronal circuits.
منابع مشابه
Coordination of fast and slow rhythmic neuronal circuits.
Interactions among rhythmically active neuronal circuits that oscillate at different frequencies are important for generating complex behaviors, yet little is known about the underlying cellular mechanisms. We addressed this issue in the crab stomatogastric ganglion (STG), which contains two distinct but interacting circuits. These circuits generate the gastric mill rhythm (cycle period, approx...
متن کاملIntercircuit control of motor pattern modulation by presynaptic inhibition.
Rhythmically active neural networks can control the modulatory input that they receive via their synaptic effects onto modulatory neurons. This synaptic control of network modulation can occur presynaptically, at the axon terminals of the modulatory neuron. For example, in the crab stomatogastric ganglion (STG), a gastric mill network neuron presynaptically inhibits transmitter release from a m...
متن کاملHormonal modulation of two coordinated rhythmic motor patterns.
Neuromodulation is well known to provide plasticity in pattern generating circuits, but few details are available concerning modulation of motor pattern coordination. We are using the crustacean stomatogastric nervous system to examine how co-expressed rhythms are modulated to regulate frequency and maintain coordination. The system produces two related motor patterns, the gastric mill rhythm t...
متن کاملNormal Patterns of Spontaneous Activity Are Required for Correct Motor Axon Guidance and the Expression of Specific Guidance Molecules
Rhythmic spontaneous electrical activity occurs in many parts of the developing nervous system, where it plays essential roles in the refinement of neural connections. By blocking or slowing this bursting activity, via in ovo drug applications at precise developmental periods, we show that such activity is also required at much earlier stages for spinal motoneurons to accurately execute their f...
متن کاملAnatomical Organization of Multiple Modulatory Inputs in a Rhythmic Motor System
In rhythmic motor systems, descending projection neuron inputs elicit distinct outputs from their target central pattern generator (CPG) circuits. Projection neuron activity is regulated by sensory inputs and inputs from other regions of the nervous system, relaying information about the current status of an organism. To gain insight into the organization of multiple inputs targeting a projecti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 34 شماره
صفحات -
تاریخ انتشار 2004